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Abstract
Anisotropy of diffusion properties in a specimen plays a key role in numerous applications of
nuclear magnetic resonance (NMR) imaging, like non-invasive tracking of fibers in the central
nervous system. We suggest that contrasting fiber structures with certain diameters could be
improved if second-order effects are taken into account. We introduce a procedure consisting of
two standard diffusion NMR experiments differing in their gradient pulse characteristics. These
two echo signals will be called the background and principal signals. We show that the
difference obtained by subtracting one echo signal from the other has either typical or
anomalous properties. In the typical case, as the duration of the gradient pulse in the second
experiment is set to smaller and smaller values, the difference from the background echo signal
tends toward its maximum. In contrast, in the anomalous case the difference between the
background and the principal signals has a maximum at a certain nonzero duration of the pulse
in the second experiment. This critical duration is determined by different characteristics,
including the diameters of fibers. For this anomalous effect to take place the fast surface
diffusion channel coupled to the surrounding media is required. The diffusion of magnetic
molecules along the surface of restricted media and the coupling of the surface and the bulk
translational motions can strongly modify the echo attenuation NMR signal. The origin of this
strong anomalous effect is the change of the symmetry of the lowest diffusion eigenmode of the
system. We illustrate the effect of surface diffusion for a cylindrically symmetric system and
describe the experimental conditions under which the anomalous behavior of the echo signals
can be observed.

1. Introduction

In the last few decades nuclear magnetic resonance (NMR) [1]
has been a topic of extensive research, having broad
applications in physics, chemistry, neuroscience and medicine.
NMR measurement provides a very effective method to study
the spin properties of a system and extract information about
spin distribution and interactions in the system. There are two
main applications of NMR: magnetic resonance spectroscopy
and magnetic resonance imaging (MRI) [2]. Magnetic
resonance imaging allows one to determine the nuclear spin
distribution (usually hydrogen atom distribution) and spin
relaxation in the spin systems. The imaging is based on the
attenuation echo signal upon application of a special magnetic
field pulse sequence to the spin system. Depending on
the systems and the parameters which are studied, there are

different types of MRI. Namely, functional MRI [3], which
is used to measure brain activity, diffusive MRI [4], which
addresses spin diffusion; and others.

In the present paper we address the problem of spin
diffusion in NMR imaging. We consider the case of restricted
diffusion with molecular motion in a restricted geometry.
Experimentally restricted diffusion is studied by a special
method, the magnetic resonance pulsed-gradient method [4],
which is based on measurements of a magnetic resonance echo
attenuation signal for a special Stejskal–Tanner sequence of
magnetic field gradient pulses [5]. There are two mechanisms
of suppression of the echo signal in these measurements.
The first mechanism is related to spin relaxation processes,
and the second mechanism is related to molecular diffusion,
which results in dephasing of spins and correspondingly to
suppression in the signal. From the strength of the attenuation
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signal the parameters of molecular diffusion and the geometry
of restricted media can be extracted [6–9]. Diffusion MRI
and especially its modification, diffusion tensor imaging, in
which the diffusion coefficients in different directions are
measured, becomes now a very powerful method to produce
images of biological tissues, non-invasive animal anatomy
studies [10, 11], fiber tracking [7, 12, 13], timely detection
of changes of apparent diffusion during such pathologies as
stroke [14], and estimation of the response to treatment in
brain cancer patients [15]. Magnetic resonance imaging is also
widely used to study the properties of nanocrystalline systems,
e.g. nanocrystalline ion conductors, where a slow diffusion of
Li ions in grain regions and a fast diffusion of ions in interfacial
regions affect the Li solid-state NMR signal [16].

The problem of diffusion in heterogeneous biological
systems has been extensively studied in the literature in
relation to the effective diffusive characteristics of the
media, which manifest themselves in the diffusive MRI
measurements [17–20]. Different analytical and numerical
methods have been employed to find an effective diffusion
coefficient of the disordered heterogeneous media consisting
of different homogeneous phases. It was shown that the
effective diffusion coefficient depends on the microscopic
diffusion coefficients, on the volume fractions of the different
phases and their permeability. In the present paper we study
not the effective diffusion properties of the media, but the
manifestation of the intrinsic heterogeneous structure of the
system in the diffusive MRI signal. Namely, we show below
that the echo signal in the pulsed-gradient measurements can
be strongly affected by molecular surface diffusion along the
boundaries of restricted media. The presence of a surface
channel can modify the signal not only quantitatively but
also qualitatively. The origin of this modification is the
following. The echo signal from diffusive media can be
analytically expressed in terms of eigenmodes of the diffusive
operator [21]. Such a signal usually depends on the lowest
eigenmodes [21, 22]. An interesting property of restricted
media with surface diffusion is that the surface diffusion along
the boundary of the system can rearrange the order of the
eigenvalues of the diffusion operator. This rearrangement can
change the symmetry of the second lowest eigenmode, which
produces new qualitative features of the echo signal. Such a
property of the surface diffusion can be used to extract from
the echo signal the parameters of the surface channel, such as
a surface diffusion coefficient. Below we define the surface
channel as a narrow layer near the boundary surface of the
diffusive medium. The diffusion coefficient within the narrow
surface layer is different from the diffusion coefficient in the
volume.

In the present paper we consider a cylindrically symmetric
restricted geometry with spin diffusion both inside the medium
and along the boundary surface of the medium. The restricted
medium in the shape of a cylinder is the simplest structure
for which the anomalous effects of surface diffusion can
be observed and, to some extent, analytical analysis of the
system can be done. The similar anomalous effects should
also be expected for spherically symmetric media and for
restricted media of other shapes. The restricted medium

Figure 1. (a) The residual echo signal as a function of gδ is shown
for αR = 200, α� = 0.667 and different values of αD: 1.2 (dashed
line), 9 (solid line) and 20 (dashed–dotted line). These values
correspond to Ds = 1 × 10−7 m2 s−1 (dashed–dotted line),
Ds = 4.5 × 10−8 m2 s−1 (solid line) and Ds = 6 × 10−9 m2 s−1

(dashed line) and Dv = 5 × 10−9 m2 s−1, δ = 0.1 ms, � = 30 ms,
R = 10 μm. Inset: schematic illustration of Stejskal–Tanner gradient
pulse sequence. (b) The residual echo signal as a function of gδ is
shown for αR = 200 and different values of α�: 0.667 (dashed line)
and 20 (solid line). These values correspond to
Ds = 6 × 10−9 m2 s−1, Dv = 5 × 10−9 m2 s−1, δ = 0.1 ms,
R = 10 μm and τv = τs = 0.1 ms.

with cylindrical symmetry could be considered as a model
of fibers in biological systems: for example, axons in the
white matter of the live lamprey spinal cord [11]. This model
can also be applied to solid-state systems, e.g. nanocrystalline
ion conductors [16]. In all these cases our model consists
of two regions: (i) the region in the bulk of the restricted
media, inside the cylinder, and (ii) the boundary surface layer.
We introduce the diffusion of the molecules in both of the
regions, i.e. volume and surface diffusions with different
diffusion coefficients. We also consider the coupling between
these regions through the exchange of molecules between two
regions. This system can be described by the model (1)–
(10) (section 2). Our analysis shows a novel anomalous effect
described in section 3.

2. Main system of equations

Diffusion NMR measurements are based on the Stejskal–
Tanner pulse sequence [5], which is shown schematically in
the inset in figure 1(a). It consists of π/2 and π radio-
frequency pulses, and two rectangular magnetic gradient pulses
of duration δ and magnitude g. The time interval between
the gradient pulses is �. The echo signal after these pulses
is measured. There are different approximations used to find
the expression for the echo signal. One of them, which is
explored in the present paper, is based on the narrow-gradient
pulse approximation [4, 23–26]. Within this approximation we
assume that the gradient pulses are so narrow, i.e. δ is so small,
that there is no diffusion of molecules during time δ. In this
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case the echo signal can be expressed in the following form:

E(q,�) =
∫ ∫

d�r d�r1 ρ(�r)P(�r , �r1,�)ei2π �q(�r−�r1), (1)

where ρ(�r) is the initial molecular density distribution, �q =
γ �gδ/2π , γ is the nuclear gyromagnetic ratio, the echo signal
is normalized, E(0,�) = 1, and

P(�r , �r1,�) =
∑

n

ψn(�r)ψn(�r1)e−λn� (2)

is a conditional probability that a molecule diffuses from point
�r to point �r1 over the time interval �. Here ψn(�r) and λn are
the nth eigenfunction and eigenvalue of the diffusion operator
within the restricted media. The conditional probability
describes the property of the diffusive media only and does
not depend on the presence of a magnetic field and the
magnetic gradient pulses. In expression (1) the information
about the gradient pulses is introduced through the exponent
exp[i2π �q(�r −�r1)]. From equations (1) and (2) we can see that,
at a small time interval between the gradient pulses, �, the
main contribution to the echo signal comes from the eigenmode
with the lowest eigenvalue.

The surface diffusion channel can strongly modify the
symmetry and other properties of the lowest eigenfunctions.
The change in the symmetry of the eigenmodes can modify
the echo response from the restricted media. To illustrate
the effect of surface diffusion on the echo signal in pulsed-
gradient experiments we consider a cylindrically symmetric
system, e.g. cylindrical pore or cylindrical fiber. The radius of
the cylinder is R. We assume that there is a surface diffusion
channel at the surface of the cylinder. In general the surface
diffusion coefficient in the surface channel is different from the
volume diffusion coefficient.

The molecular diffusion in the system with the
surface diffusion channel is described by the Torrey–Bloch-
type equations [27] combined with surface–bulk coupling
equations [28]

∂c(�r, t)

∂ t
= DV�r c(�r, t) (3)

∂u(�r , t)

∂ t

∣∣∣∣
r=R

= [DS�su(�r , t) − DV∇nc(�r, t)]|r=R (4)

− DV ∇nc(�r, t)|r=R =
[

ac(�r, t)

τv
− u(�r , t)

τs

]∣∣∣∣
r=R

, (5)

where c(�r, t) and u(�r , t) are the volume and surface densities
of the molecules (magnetic moments), DV and DS are the
volume and surface diffusion coefficients, �s is the surface
Laplacian and ∇n is the gradient along the normal to the
boundary. The second term on the rhs of equation (4) is a
standard diffusion term, while the first term plays the role of
a source in the surface diffusion equation. This source is due
to diffusion of the molecules from the volume to the surface.
Equation (5) describes a microscopic coupling of the volume
and surface diffusion processes. This coupling occurs through
a narrow transition region of width a [28]. The width of the
transition region is of the order of an elementary diffusion

hopping length, i.e. free path across the surface channel.
Within the transition region the molecules in the volume are
absorbed by the surface at a rate of 1/τv, while the molecules
at the surface are leaving the surface at a rate of 1/τs. Therefore
equation (5) is a detailed balance equation within the transition
region.

The eigenmodes of the system of equations (3)–(5) have
the following form: c(�r, t) = e−λ2

m t eimφc0(ρ) and u =
e−λ2

m t eimφu0. Here m is an integer (angular momentum), ρ
and φ are polar coordinates, λ2

m is a corresponding eigenvalue
and u0 is a constant. Upon substituting these expressions in
equations (3)–(5) we derive the equation for eigenvalues of the
diffusion problem:

βm Jm−1(βm)− [m − Am(βm)]Jm(βm) = 0, (6)

where Jm is a Bessel function of the mth order, βm =
λm R/

√
DV and Am is given by the expression

Am(β) = αR

1 − αR (a/R)
ατ (β

2−m2αD)

. (7)

Here we introduce the following dimensionless parameters:

αR = R2

τv DV
, ατ = τs

τv
, αD = DS

DV
. (8)

These parameters characterize the system and determine the
properties of the echo signal. For each value of m, equation (6)
has an infinite number of solutions, i.e. eigenvalues, which
can be labeled by index k. The corresponding eigenfunctions
are Bessel functions, Jm(βm,kρ/R). With the known set of
eigenvalues and eigenfunctions of diffusion problem (3)–(5)
we can find the echo signal from equation (1). The final result
has the form [26]

E(Q,�) =
∑
m,k

e(−β
2
mk/α�)

(1 + δm,0)β
2
mk

[Am(βmk)]2 + β2
mk − m2

×
[
Q dJm(Q)

dQ + Am(βmk)Jm(Q)
]2

(Q2 − β2
mk)

2
, (9)

where α� = R2

DV�
and Q = q R.

We can see from equation (9) that contributions
of different eigenfunctions are determined by exponential
activation factors e(−β2

mk/α�). At small α�, i.e. at large
�, the main contribution to an echo signal comes from
the eigenfunction with the smallest eigenvalue. Usually the
lowest eigenfunction has the highest symmetry. In the present
problem the highest symmetry means that the function has
m = 0. From equation (6) we can see that the lowest
eigenvalue is always β = 0, which is realized at m = 0.
The corresponding eigenfunction is constant over the whole
restricted region and is not affected by the presence of the
surface diffusion channel. Then the contribution of the lowest
eigenmode (β = 0) forms the background echo signal, which
is proportional to [J1(Q)/Q]2. In dimensionless units, Q =
q R, the background signal does not depend on parameters of
the restricted media. Therefore we can subtract the background
value from the echo signal (9) and obtain the residual signal,
Er(Q) = E(Q) − Eβ=0(Q), which has information about the
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structure and parameters of restricted media with the surface
diffusion channel. Therefore, for the residual signal we obtain
the following expression:

Er(Q,�) =
∑

m,k,βm,k �=0

e(−β
2
mk/α�)

(1 + δm,0)β
2
mk

[Am(βmk)]2 + β2
mk − m2

× [Q dJm(Q)
dQ + Am(βmk)Jm(Q)]2

(Q2 − β2
mk)

2
. (10)

Below we present the analysis of the residual echo signal,
Er, and show that the surface diffusion channel can modify this
signal qualitatively. This is due to the fact that surface diffusion
can rearrange the relative contributions into the residual echo
signal of the eigenmodes with m = 0 and 1.

3. Results and discussion

As we can see from expression (10) the term with m = 0
is proportional to the Bessel function of zeroth order, while
all other terms, i.e. m �= 0, are proportional to higher-order
Bessel functions. This fact determines a special dependence
of these terms on parameter Q. Namely, the m = 0 term in
equation (10) has its maximum at Q = 0, while all other terms
have their maximum at Q > 0 and they are zero at Q = 0. This
property can be used to determine experimentally if the lowest
eigenfunction has m = 0 or m > 0 (in the residual signal we
do not need to consider the eigenfunction with β = 0, which
always has m = 0).

The order of eigenvalues depends on the values of
parameters αR , ατ and αD , and strongly affects the residual
echo signal. To study the echo signal in the present system
we calculate numerically the eigenvalues and corresponding
eigenfunctions from equation (6) for different values of
parameters of the system and then calculate the residual echo
signal, Er(Q), at various values of α�. Below we assume that
the parameter ατ equals 1, i.e. τs = τv. Then the property
of the system depends only on two dimensionless parameters,
αR and αD . Depending on the values of these parameters there
are two different types of behavior of Er(Q). (i) In the first
type (type (T)) the lowest eigenvalue corresponds to m = 0.
The residual echo signal as a function of Q has maximum
at Q = 0 and then decreases with some oscillations. This
is a typical dependence observed in many restricted diffusion
experiments. (ii) In the second type (type (A)) the lowest
eigenvalue corresponds to m = 1. The residual echo signal has
zero value at Q = 0, then increases and reaches the maximum
at some finite value of Q. These dependences can be observed
only at small values of α�, when only the function with the
lowest eigenvalue contributes to the echo signal. At higher
values of α� there is a mixture of different contributions to
the echo signal. Therefore, type T behavior is observed when
β0,2 < β1,1, while type A behavior is observed if β0,2 > β1,1.

In figure 1(a) we present the results of calculations, which
illustrate the characteristic dependences of the residual echo
signal in the system with surface diffusion. The results are
shown for fixed values of αR = 200 and α� = 0.667, and
different values of αD = 1.2, 9 and 20. With increasing αD

we observe the transition from anomalous regime A to typical

Figure 2. A normalized value of a residual echo signal at Q = 0, i.e.
the ratio Er(0)/Er,max, is shown by different colors in the αR–αD

plane. The parameter α� is 3. The boundary between two different
domains, A and T, is shown by a solid line. Domains A and T are
determined by the condition: β0,2 < β1,1 (domain A) and β0,2 > β1,1

(domain T).

(This figure is in colour only in the electronic version)

regime T. Due to a finite value of α� in the intermediate region
we have a mixture of two dependences A and T.

The results, shown in figure 1(b), illustrate the
transformation of the anomalous signal with the increasing
parameter α�. The parameters αR = 200 and αD = 1.2 in
figure 1(b) correspond to anomalous regime A. Therefore at
small α� = 0.667 we have a behavior corresponding to the
eigenmode with m = 1, i.e. the residual echo signal is zero
at Q = 0 and has a maximum at some finite value of Q.
With α� increasing (α� = 20), there is a mixture of terms
corresponding to eigenmodes with higher eigenvalues. Such
a mixture results in behavior similar to case T, when the echo
signal has a finite value at Q = 0 and its maximum value is
reached near Q = 0.

The domains of parameters within which we have type
T or type A behavior are determined from the solution of
equation (6). In domain T we have β0,2 < β1,1, while domain
A is characterized by a relation β0,2 > β1,1. In figure 2 the
boundary between two domains in a plane αR–αD is shown
by a solid line. We can see from this figure that anomalous
behavior, i.e. A behavior, can be observed only at relatively
slow surface diffusion, i.e. at small values of αD . At a
large value of parameter αR domain A is determined by an
asymptotic relation αD � 9, i.e. DS � 9DV.

The parameter α� in equation (10) can be considered as an
effective ‘temperature’, which controls the mixture of terms,
corresponding to different eigenmodes. Therefore at large
values of α� the echo signal is determined by the mixture of
the contributions of a few modes with the lowest eigenvalues.
The anomalous dependence of the signal on parameter Q can
be described by the ratio of Er(Q = 0) and the maximal value
of Er(Q): φ = Er(0)/Er,max. At a very small α� this ratio is 0
in domain A and 1 in domain T. At a finite value of α� there is a
smooth transition from φ = 0 to 1. This property is illustrated
in figure 2, in which the ratio φ is shown at α� = 3.0.

The anomalous behavior can be achieved only under
favorable coupling between volume and surface diffusions,
ατ ∼ 1. Under this condition there is a dependence of the
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Figure 3. The position of the maxima of the echo signal, Er,max, is
shown in the 1/�–gδ plane for different values of αD . Here αR = 2
and ατ = 1.

Figure 4. The residual echo signal is shown for two cylinders with
radii R = 5 μm (dashed line) and R = 10 μm (solid line). Here
DV = 5 × 10−9 m2 s−1 and DS = 6 × 10−9 m2 s−1,
τv = τs = 0.1 ms and� = 1 ms.

coefficient Am(β) on the parameter m, which results in the
possibility of reordering the eigenvalues. If ατ � 1, i.e.
τs � τv, then we have only absorption of the molecules by
the surface. In this case the coefficient Am(β) has a weak
dependence on m which leads to T-type behavior only. In the
case of surface absorption the boundary conditions take the
form DV∇nc = ρc, where ρ is the surface relaxivity [26].
The system with just the surface absorption has been studied
extensively in the literature [26, 29–31].

We can also characterize the anomalous behavior of the
echo signal by the value of Q at which the residual echo signal,
Er, has a maximum, Er,max = Er(Q = Qmax). To illustrate
the appearance of anomalous dependence in realistic systems,
in figure 3 we show the position of the maxima, Qmax, in a
gδ–(1/�) plane for different values of parameter αD and for a
fixed value of αR = 2. For typical dependence the maximum
is at gδ = 0, while for anomalous dependence the maximum
is at gδ > 0. We clearly see the transition from T dependence
at small αD to A dependence at large αD . Here the critical
value of αD ≈ 3.88 determines the boundary between these
two dependences.

One of the applications of the above results would be the
possibility of tuning the residual echo signal by varying the
magnitude of the gradient pulse, g. Under the optimal value
of g the residual echo signal has a maximum value. The value
of optimal g depends on the size of the restricted media. The
effect of the tuning of the echo signal by varying the gradient

Figure 5. The difference�E(Q,�1,�2) (see equations (11)
and (12)) is shown as a function of gδ at α�1 = 2.0 and different
values of α�2 : α�2 = 0.0 (solid line), α�2 = 0.5 (dotted line) and
α�2 = 1.0 (dashed line). The other parameters are
Ds = 6 × 10−9 m2 s−1, Dv = 5 × 10−9 m2 s−1, R = 10 μm and
τv = τs = 0.1 ms. At α�2 = 0.0 the difference�E(Q,�1, �2) is
equal to the residual echo signal.

pulse, g, is illustrated in figure 4 for a system of two cylinders
with radii of 5 and 10 μm. We can see from the figure that, if
the gradient gδ ≈ 0.012 s T m−1 is applied to a system, then
only the residual echo signal from the cylinder of radius 5 μm
is at maximum. If we tune the gradient pulse and apply gδ ≈
0.007 s T m−1 then we can increase the residual echo signal
from the cylinder of radius 10 μm by almost twice as much.

The residual echo signal discussed above is obtained by
subtracting the background value from the original echo signal.
The background contribution to the echo signal corresponds to
β = 0 and therefore it does not depend on the values of �, i.e.
α�. This fact can used to realize experimentally the subtraction
of the background contribution from the echo signal. Namely,
the residual echo signal can be obtained experimentally as the
difference between two echo signals with different values of
α�. From equation (9) we obtain that the difference

�E(Q) = E(Q,�1)− E(Q,�2) (11)

has the following form:

�E(Q,�1,�2) =
∑

m,k,βm,k �=0

[e(−β2
mk/α�1 ) − e(−β

2
mk/α�2 )]

× (1 + δm,0)β
2
mk

[Am(βmk)]2 + β2
mk − m2

× [Q dJm(Q)
dQ + Am(βmk)Jm(Q)]2

(Q2 − β2
mk)

2
. (12)

If the parameter α�2 is zero then the difference�E(Q,�1,�2)

is exactly equal to the residual echo signal, i.e. �E(Q,�1,

�2) = Er(Q,�1). Under finite but small values of α�2 the
difference is a good approximation to the residual echo signal.
In figure 5 we show the difference �E(Q,�1,�2) at fixed
α�1 = 0.2 and different values of α�2 = 0, 0.5 and 1. As we
mentioned above, at α�2 = 0 the difference �E(Q,�1,�2)

is equal to the residual echo signal, Er(Q,�1). At finite val-
ues of α�2 we can see a deviation from Er. The deviation is
less than 6% at α�2 = 0.5 and increases with increasing the
parameter α�2 . Therefore, if α�2 is small then the difference
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�E can be considered as a good approximation of the residual
echo signal.

In the above approach we did not take into account the
bulk and surface spin relaxation, which enter into the standard
Torrey–Bloch equations through the term of the form −μc.
This term introduces an additional suppression of the echo
signal by a factor of exp(−tμ). Then the condition in which
the diffusive attenuation of the echo signal can be observed is
that the time � should be less than μ−1. If μ−1 < � then
the echo signal is suppressed, but the anomalous effect can still
be observed. The condition of suppression of the anomalous
effect is that the relaxation time μ−1 should be greater than the
typical diffusion time, R2/D ∼ 0.01 s.

The analysis of the MRI echo signal was based on a
narrow pulse approximation, i.e. the duration, δ, of the gradient
pulse is assumed to be so small that diffusion does not occur
during time δ. For a cylindrical sample of radius R this
condition means that δ 	 R2/Dv. For example, if R = 10 μm
and Dv ∼ 10−8 m2 s−1 then δ 	 0.01 s. In terms of the
amplitude, g, of the gradient pulse this condition means g �
0.1 T cm−1. Such conditions can be achieved in experimental
systems, for example, in [11], where the pulse duration is 6 ms.

It is a challenge to measure the ratio of surface and volume
diffusion coefficients in leaving tissues directly. What has
been measured in the diffusion MRI is an average diffusion
coefficient, but not individual coefficients of surface and
volume diffusions. The approach described here can also
be used to estimate this ratio by comparing positions of the
experimentally obtained maximum of the anomalous signal to
the numerically obtained one (figure 3).

In conclusion, we have shown a strong qualitative effect
of the surface diffusion channel on the echo attenuation
signal from restricted geometry. In some range of parameters
of the system the residual echo signal, which is obtained
by subtracting the background value, can have anomalous
behavior, which means that the echo signal has a maximum
value at some finite value of the magnitude, g, of the gradient
pulses. This fact can be used to enhance the accuracy of
the measurements by studying the echo signal around the
maximum value. Also, the method allows one to enhance
the contrast of the MRI image of the fibers with a particular
diameter. The anomalous dependence can also be used to
extract the information about the surface diffusion channel.
We have discussed only the case of the media consisting of
parallel cylindrical fibers, e.g. white matter of the brain [11].
The same qualitative results are also valid for media consisting
of spheres. The effect described here could be used for tuning
MRI measurements to trace fibers with particular characteristic
diameters or for timely detection of changes in the diffusion
coefficients and fiber diameters.
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